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Abstract. We analyse the constraints obtained from new atomic clock data on the possible
time variation of the fine structure ‘constant’ and the electron-proton mass ratio and show
how they are strengthened when the seasonal variation of Sun’s gravitational field at the
Earth’s surface is taken into account.

1. Intoduction

General relativity and the standard model of
particle physics depend on some 27 seemingly
independent numerical parameters. These in-
clude the fine structure constants with deter-
mine the strengths of the different forces, ma-
trix angles and phases and the relative masses
of all known fundamental particles. These pa-
rameters are commonly referred to as the fun-
damental constants of Nature, although many
modern proposals for fundamental physics pre-
dict that they are neither strictly fundamental
nor constant.

Indeed, variation of the traditional ‘con-
stants’, at some level, is a common predic-
tion of most modern proposals for fundamen-
tal physics beyond the Standard Model. For
instance, if the true fundamental theory ex-
ists in more than four space-time dimensions
then the constants we observe are merely four-
dimensional ‘shadows’ of the truly fundamen-
tal high dimensional constants. The four di-
mensional constants will then be seen to vary
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as the extra dimensions change slowly in size.
Searches for and limits on the variations of the
traditional constants therefore provide an im-
portant probe of fundamental physics.

2. Discussion

In many theoretical models of varying con-
stants, one expects the values of the constants
to evolve slowly as the Universe expands.
Locally, this would manifest itself as a slow
temporal drift in the values of the constants.
Laboratory constraints on such a drift are gen-
erally found by comparing clocks based on dif-
ferent atomic frequency standards over a pe-
riod of one or more years. The current best
limit on the drift of the fine structure constant,
α, was found by Rosenband et al. (2008). They
repeatedly measured the ratio of aluminium
and mercury single-ion optical clock frequen-
cies, fAl+/ fHg+ over a period of about a year
and found: α̇/α = (−5.3 ± 7.9) × 10−17 yr−1.

If the ‘constants’, such as α, can vary, then
in addition to a slow temporal drift one would
also expect to see an annual modulation in their



792 Shaw: Constraints from Seasonal Variations

values (Shaw 2007). In many theories, the Sun
perturbs the values of the constants by a factor
roughly proportional to the Sun’s Newtonian
gravitational potential, which scales as the in-
verse of distance, r, between the Earth and
the Sun. r fluctuates annually, reaching a mini-
mum at perihelion in early January and a max-
imum at aphelion in July. The values of the
constants, as measured here on Earth, should
also therefore oscillate in a similar seasonal
manner. Moreover, for many many cases, this
seasonal fluctuation is predicted to dominate
over any linear temporal drift (Shaw 2007;
Barrow & Shaw 2008).

We suppose that the Sun creates a distance-
dependent perturbation to the measured value
of a coupling constant, C, of amplitude δ lnC =
C(r). If this coupling constant is measured on
the surface of another body (e.g. the Earth)
which orbits the first body along an elliptical
path with semi-major axis a, period Tp, and ec-
centricity e � 1, then to leading order in e, the
annual fluctuation in C, δCannual will be given
by

δCannual

C = −cC cos
(

2πt
Tp

)
+ O(e2), (1)

where cC ≡ e aC′(a), C′(a) = dC(r)/dr|r=a and
t = nTp, for any integer n, corresponds to the
moment of closest approach (perihelion); here
a = 149, 597, 887.5 km is the semi-major axis
of the Earth’s orbit. In the case of the Earth
moving around the Sun, over a period of 6
months from perihelion to aphelion one would
therefore measure a change in the constant C
equal to 2cC. As we stated above, in many the-
oretical modes,δ lnC = C(r) ∝ ∆U�(r) where
U�(r) = −GM/r is the Newtonian potential of
the Sun. We introduce sensitivity parameters
kC defined by δ lnC = kC∆U�. Hence:

cC = ea
GM�

a2 kC = 1.65 × 10−10kC. (2)

Once one specifies a theoretical model of vary-
ing constants, the kC are determined. hence
measuring or constraining the kC limits the un-
derlying theory. One generally expects kC ∼
O(1) in higher dimensional theories such as
String Theory, however, as we shall see, obser-
vations generally constrain kC � 1.
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Fig. 1. Frequency ratio fAl+/ fHg+ as measured by
Rosenband et al. (2008). The solid black line shows
the maximum likelihood fit for a seasonal variation.

Rosenband et al. (2008) fitted a linear drift
in α to their data finding α̇/α = (−1.6 ± 2.3) ×
10−17 yr−1. We fitted the expected form of any
annual fluctuation, Eq. 1, to the measured val-
ues of fAl+/ fHg+(Barrow & Shaw 2008). Fig.
1 shows the best-fit line superimposed on
the (Rosenband et al. 2008) data. It should
be noted that the magnitudes of the system-
atic errors for the middle three data points
were not verified to the same precision as
they were from the first and last data points
(Rosenband et al. 2008). We do not expect to
this have a great effect on the resulting con-
straint on kα. Using δ ln( fAl+/ fHg+ = (3.19 +
0.008)δα/α, (Rosenband et al. 2008), a maxi-
mum likelihood fit to the data gives

kα = (−5.4 ± 5.1) × 10−8. (3)

This limit on kα is almost an 2 order of mag-
nitude improvement on the previous limit of
kα = (2.5 ± 3.1) × 10−6 from by Blatt et al.
(2008).

The frequency shifts measured by
Rosenband et al. (2008) are not sensitive to
changes in the electron-proton mass ratio:
µ = me/mp. However, measurements of
optical transition frequencies relative to Cs
are sensitive to both µ and α, and H-maser
atomic clocks can detect changes in the light
quark to proton mass ratio: q = mq/mp. We
define sensitivity parameters kµ and kq for µ
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and q respectively. We then find that the Yb+

frequency measurements of Peik et al. (2004)
give kα+0.51kµ = (7.1±3.4)×10−6. Combining
this limit with that on kα and the limits
kα + 0.36kµ = (−2.1 ± 3.2) × 10−6 (Blatt et al.
2008), kα + 0.17kµ = (3.5 ± 6.0) × 10−7

(Fortier et al. 2007) and kα + 0.13kq =

(1 ± 17) × 10−7 Ashby et al. (2007), we find
(Barrow & Shaw 2008)

kµ = (3.9 ± 3.1) × 10−6, (4)

kq = (0.1 ± 1.4) × 10−5. (5)

Again these represent improvements on the
previous limits of kµ = (−1.3± 1.7)× 10−5 and
kq = (−1.9 ± 2.7) × 10−5 found by Blatt et al.
(2008).

Seasonal fluctuations are predicted by a
varying constant theories because the constants
depend on the the vacuum expectation value
one or more scalar fields, φI , which interact
with normal matter. In the solar system the
field equations of these scalars typically re-
duce to Poisson equations. We label the differ-
ent constants C j(φI) and then:

∇2φI ≈ 4πG
∑

j

∂ lnC j

∂φI

δρ

δ lnC j
. (6)

We define βI j = ∂ lnC j/∂φI and then for small
variations of the scalar fields and the constants
we have:

∇2 lnCi ≈

∑

I, j

βIiβI j
δ ln ρ
δ lnC j

 4πGρ. (7)

It follows that:

‖Ci =


∑

I, j

βIiβI j
δ ln ρ�
δ lnC j

 .

We define λ(�)
j = δ ln ρ/δ lnC j which can

be calculated from the Standard Model.
Measurements of ‖Ci from seasonal varia-
tions therefore determine the model parameters∑

I βIiβI j.
The presence of spatial gradients in the

scalar fields with couple to normal matter also
results in new or fifth’ forces. The magnitude
of the new force towards the Sun on a test body

with density ρt, mass mt at a distance r from the
Sun is given by:

Fφ = mtβI jλ
(t)
j
∂φI

∂r
=

Gmt M�
r

∑

j

kC jλ
(t)
j . (8)

Now Fφ depends on λ(t)
j which depends on

the composition of the test mass. This compo-
sition dependence violates the universality of
free-fall and hence the weak equivalence prin-
ciple (WEP). WEP violations searches mea-
sure the differential acceleration of two differ-
ently composes test masses towards the Sun
which is proportional to

∑
i kCiδλ

(t)
i ; δγ(t)

i is the
difference between the λ j values for the two
test masses. Hence WEP violation searches in-
directly probe the kCi . The magnitude of any
composition-dependent fifth force toward the
Sun is currently constrained to be no stronger
than about few × 10−13 times than the gravita-
tional force (Schlamminger et al. 2008). To ex-
tract limits on the individual kCi one must ac-
curately calculate the λi parameters for the test
masses and have limits from different experi-
ments to eliminate the degeneracy between the
different kCi .

The constraints from WEP tests indi-
rectly bound kα. Indeed, they often provide
the tightest constraints on kα (Shaw 2007;
Barrow & Shaw 2008; ?). A recent and thor-
ough analysis of the WEP violation constraints
on kα (?) found:

|kα| . (0.23 − 1.4) × 10−8

with a similar limit on kq. The uncertainty in
this limit is to due to how one models nuclear
structure. Despite these uncertainties, it is clear
that WEP violation constraints from laboratory
experiments currently provide the strongest, al-
beit indirect, bounds on kα and the other kCi .

We now consider the sensitivity that would
be required of an atomic clock to provide
tighter constraints on kα than those com-
ing indirectly from limits on WEP violation.
Suppose that the ratio of two transition fre-
quencies, fA/ fB, can be measured with a sensi-
tivity σf , and that δ ln( fA/ fB) = S αδα/α (typi-
cally S α ∼ O(1), although some transitions ex-
hibit a greatly increased sensitivity (Flambaum
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2006)). The sensitivity to changes in α is then
given by σα = σf/S α. By simulating data sets,
we found that the sensitivity to kα is signifi-
cantly improved if one makes Nm & 12 mea-
surements per year (at roughly regular inter-
vals). With Nm & 12, by performing a boot-
strap linear regression with 105 re-samplings
of the simulated data points, we find that the
sensitivity, σk to kα is roughly:

σk ≈ 0.69 × 1010 σα√
Ny(Nm − 1)

.

where Ny is the number of years for which data
is taken. The total number of measurements is
therefore NyNm. Indirect constraints currently
have a sensitivity no better thanσk = 2.3×10−9

(?). This would be surpassed by direct mea-
surements if σα < 2.5

√
Ny(Nm − 1) × 10−19.

For example, if we take measurements every
20 days (or so) over a single year (Nm = 18,
Ny = 1) then we would require σα . 10−18.
Flambaum (2006) have noted that first excited
states in the 229Th nucleus is particularly sen-
sitive to changes in α and µ with S α ∼ 105,
allowing for a σα . 10−20. Such a sensitiv-
ity would limit kα at the 10−11 level – two
orders of magnitude better than the current
WEP violation constraints. In summary: we
have shown how new laboratory constraints
on possible time variation in the fine struc-
ture ‘constant’ and the electron-proton mass
ratio can yield more sensitive limits by in-
corporating the effects of the seasonal vari-
ation of the Sun’s gravitational field at the

Earth’s surface. This seasonal variation is ex-
pected in all theories which require that the co-
variant d’Alembertian of any scalar field driv-
ing variation of a ‘constant’ is proportional to
the dominant local source of gravitational po-
tential. The recent experimental results from
(Rosenband et al. 2008) and (Peik et al. 2004)
have reached the sensitivity of the quasar ob-
servations of varying α and µ made at high
redshift and we have shown may soon provide
stronger bounds on varying constants than con-
ventional ground-based WEP experiments.
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